
Journal of Global Optimization 23: 139–154, 2002.
© 2002 Kluwer Academic Publishers. Printed in the Netherlands.

139
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Abstract. In this paper we address the biobjective problem of locating a semiobnoxious facility, that
must provide service to a given set of demand points and, at the same time, has some negative effect
on given regions in the plane. In the model considered, the location of the new facility is selected in
such a way that it gives answer to these contradicting aims: minimize the service cost (given by a
quite general function of the distances to the demand points) and maximize the distance to the nearest
affected region, in order to reduce the negative impact. Instead of addressing the problem following
the traditional trend in the literature (i.e., by aggregation of the two objectives into a single one),
we will focus our attention in the construction of a finite ε-dominating set, that is, a finite feasible
subset that approximates the Pareto-optimal outcome for the biobjective problem. This approach
involves the resolution of univariate d.c. optimization problems, for each of which we show that a
d.c. decomposition of its objective can be obtained, allowing us to use standard d.c. optimization
techniques.

Key words: Biobjective Programming; Semi-obnoxious facility location; Univariate D.C. optimiza-
tion

1. Introduction

We consider the biobjective problem of locating a facility in a region S in the plane,
which installation is beneficial for a set of potential users, but, at the same time, it
has negative effects on the population or the environment, so we can distinguish a
set of negatively affected elements.

A facility with these characteristics, called semiobnoxious, involves two op-
posed and irreconcilable aims: on the one hand, the new facility must be located as
near its potential clients as possible and, on the other hand, it must be placed far
from the residents, which are affected in a negative way. In this sense, the model
considered here will take into account the following criteria for locating the new
facility at x ∈ S:

Criterion 1: Minimize the service cost from the new facility to the clients,

min
x∈S T1(x). (C1)

Criterion 2: Maximize the distance between the new facility and the nearest res-
ident,

max
x∈S

T2(x). (C2)
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The biobjective problem obtained when both criteria are simultaneously considered
can be written as:

min
x∈S

(T1(x),−T2(x)). (1.1)

The usual approach for this problem has been the aggregation into a single ob-
jective (see Carrizosa and Plastria, 1999; Chen et al., 1992; Maranas and Floudas,
1994; Nickel and Dudenhoffer, 1997 and Tuy et al., 1995 for an updated review
on the topic on semiobnoxious facility location). However, since the problem is
essentially multiobjective, we propose to construct a finite approximation for the
Pareto-optimal outcome, through the concept of ε-dominating set [Carrizosa et
al., 1997; Hansen and Thisse, 1981; Lemaire, 1992; White, 1996, 1998). In other
words, given ε = (ε1, ε2) with ε1 > 0, ε2 > 0, our aim is to obtain a finite subset
S∗ ⊂ S such that, for any x ∈ S we can find x∗ ∈ S∗ with:

T1(x
∗) � T1(x) + ε1

−T2(x
∗) � −T2(x) + ε2.

If just a singleton is sought, we can use any M.C.D.A. methodology (Vincke, 1992),
to choose one element out of this finite set S∗.

In order to obtain a more tractable problem, we make several assumptions that
will be introduced in the following section.

2. The Model

The users of the facility are modeled by a set of n points in the plane A+ =
{a1, . . . , an}, whereas the negatively affected elements are modeled by means of
a set of m regions in the plane A− = {R1, . . . , Rm}, where each Ri is a compact
and convex set, whose boundary can be written (perhaps after an approximation
process using splines (Ahlberg et al., 1967) as a finite union of line segments and
circumference arcs, i.e.,

bd(Ri) =
ni⋃
j=1

L
(i)
j

with L
(i)
j being a line segment or a circumference arc. Note that these assumptions

include the case in which Ri is a polygonal region, decomposed into convex poly-
gons via a triangulation process. Note also that, as a particular case, a region Ri

reduced to a point is allowed.
We consider the particular case of (1.1) with T1 and T2 defined as

T1(x) = h(D1(γ1(x − a1)), . . . ,Dn(γn(x − an))) (2.2)

T2(x) = min
1�i�m

dR(x,Ri) (2.3)
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where:
• x is the (unknown) location for the new facility.
• ai are the coordinates of the i-th demand point, i = 1, . . . , n.
• γi is a guage providing a measure of the distance between ai and any point of

the plane, that is, a (convex) function γi : R
2 �→ R defined as

γi(x) = inf{t > 0 : x ∈ tBi} x ∈ R
2 (2.4)

where Bi is a convex set, the interior of which contains the origin (Michelot,
1993).

• Di : R �→ R+ is a convex, non-decreasing and non-constant function provid-
ing the service cost to the i-th demand point per unit of distance.

• h : R
n �→ R is a monotonic norm, (Bauer et al., 1961), i.e., a norm satisfying

(u, v ∈ R
n, |ui | � |vi| ∀i) ⇒ h(u) � h(v).

In particular, the Lp-norms, ‖ · ‖p, are monotonic for 1 � p � ∞.
• S is the feasible set for locating the new facility, which is assumed to be

compact, not necessarily convex, and its boundary is a finite union of arcs
of conic curves.

• dR(x,Ri) = minxi∈Ri
‖x − xi‖2

In particular, the first objective includes, among others, the classical criteria in
Location Theory (Plastria, 1995: minisum(h = ‖ · ‖1), minimax (h = ‖ · ‖∞) and
cent-dian (h = (1 − λ)‖ · ‖1 + λ‖ · ‖∞).

3. The algorithm

In this section we describe a procedure for building a finite ε-dominating set for
Problem (1.1). Roughly speaking, such a procedure is based on the search of an
ε-dominating set for a finite set of subproblems, obtained by decomposing the
feasible set S into pieces within which the objective T2 has a simpler structure.
In this sense, given a region Rj , let Vj denote the Voronoi cell associated with Rj :

Vj = {x ∈ R
2 : dR(x,Rj ) � dR(x,Ri), i �= j, 1 � i � m}.

Hence, since {Vj }nj=1 covers the plane, and ε-dominating set can be obtained by
merging ε-dominating sets for the subproblems

min
x∈S∩Vj

(T1(x),−T2(x)). (3.5)

From the fact that the boundary of each Rj is made of line segments and circum-
ference arcs, we conclude that the boundary of each Vj will consist of conic arcs,
(Okabe et al., 1995).

The construction of an ε-dominating set for Subproblem (3.5) is simplified due
to the fact that it can be reduced to solving a finite number of univariate d.c. optim-
ization problems (see Remarks 3.7 and 3.13 below). To do this, the following result,
proposed in Blanquero (1999) and Blanquero and Carrizosa (2000), is needed.
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PROPOSITION 3.1. Let � ⊂ R
n be a convex set. Let γ : R

q → R be a guage
in R

q with unit ball B, let f = (f1, . . . , fq) : � → R
q be a d.c. mapping,

with d.c. decomposition known: fi = f +
i − f −

i , with f +
i , f −

i convex. For any
i = 1, . . . , q, let Mi � max{γ (ei), γ (−ei)}, where ei is the ith unit vector of R

q .
Then, γ ◦ f : � → R is a d.c. function and a d.c. decomposition for it is given by

γ ◦ f =
(
γ ◦ f +

q∑
i=1

Mi(f
+
i + f −

i )

)
−

q∑
i=1

Mi(f
+
i + f −

i ). (3.6)

Now we present a detailed description of the algorithm.

Step 0. Choose ε1 > 0 and ε2 > 0 and set ε = (ε1, ε2).
Step 1. Solve the unconstrained minimization problem associated with the first
criterion:

min
x∈R2

T1(x) := h(D1(γ1(x − a1)), . . . ,Dn(γn(x − an))). (P0)

The assumptions on Di and h allow us to ensure that (see Hiriart-Urruty and
Lemaréchal, 1993)

PROPOSITION 3.2. Function T1 is convex.

and (see Blanquero, 1999)

PROPOSITION 3.3. Problem (P0) has always a finite optimal solution

An optimal solution for (P0) can be obtained by the usual techniques in Convex
Optimization, although there exist particular cases for which we can use specific
methods (see Plastria, 1995 and the references therein).

In what follows, x∗
0 will denote an optimal solution for (P0).

Step 2. Construct the set of Voronoi cells V(A−) = {V1, . . . , Vm} associated with
the negatively affected regions Ri , i = 1, . . . , m.

Once V(A−) has been built we must find a Voronoi cell Vk containing the point
x∗

0 :

dR(x
∗
0 , Rk) = min

1�i�m
dR(x

∗
0 , Ri).

If x∗
0 belongs to more than one Voronoi cell, we select anyone of them.
If x∗

0 is feasible, we define the index set I = {i : 1 � i � m, i �= k, Vi ∩S �= ∅}
and go to Step 3. Otherwise, we define I = {i : 1 � i � mVi ∩ S �= ∅} and go to
Step 4.

Step 3. Obtain a finite ε-dominating set for the set Vk ∩ S.
The following result asserts that x∗

0 ε-dominates every point in a given subset of
Vk ∩ S.
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PROPOSITION 3.4. Given Ek = {x ∈ Vk : dR(x,Rk) � dR(x
∗
0 , Rk)}, the point

x∗
0 , optimal solution of (P0), (0,0)-dominates every point x̃ ∈ Ek ∩ S.

Proof. By the choice of x∗
0 one has that T1(x

∗
0 ) � T1(x̃) for every x̃ ∈ Ek ∩ S.

On the other hand:

min
1�i�m

dR(x̃, Ri) = dR(x̃, Rk) � dR(x
∗
0 , Rk) = min

1�i�m
dR(x

∗
0 , Ri)

from where it follows that T2(x
∗
0 ) � T2(x̃). Taking into account both inequalities

we conclude that x∗
0 (0, 0)-dominates x̃. �

Now our aim is to obtain a finite ε-dominating set for (Vk\Ek)∩S. We consider
the sequence {rj }∞

j=0, recursively defined as

r0 = dR(x
∗
0 , Rk) rj = rj−1 + ε2 j ∈ N,

as well as the sets

Ck
j = {x ∈ R

2 : dR(x,Rk) = rj }
j = 0, 1, . . .

Dk
j = {x ∈ R

2 : rj � dR(x,Rk) � rj+1}
The boundary of Rk is composed by line segments and circumference arcs, from
where we conclude that Ck

j can be written as a finite union of these elements. On
the other hand, S is bounded and, therefore, we can ensure the existence of an index
Jk ∈ N in such a way that the set

(⋃
j�Jk

Dk
j

)
∩ Vk ∩ S covers (Vk\Ek) ∩ S.

We are now going to describe a procedure for obtaining a point that ε-dominates

the set Dk
j ∩Vk ∩S, yielding a finite ε-dominating set for

(⋃
j�Jk

Dk
j

)
∩Vk ∩S. In

order to find these ε-dominating points we consider, for each index j = 0, . . . , Jk ,
the set C̃k

j defined as

C̃k
j = (Ck

j ∩ Vk ∩ S) ∪ (Dk
j ∩ bd(Vk ∩ S))

as well as the optimization problem

min{T1(x) : x ∈ C̃k
j }. (P k

j )

Observe that bd(Vk ∩ S) = (bd(Vk)∩ S)∪ (Vk ∩ bd(S)) since Vk and S are closed.

EXAMPLE 3.5. Consider a biobjective location problem with two negatively af-
fected regions R1 and R2, defined as the square of vertices (−1, 1), (−1,−1),
(1,−1) and (1, 1), and the point (5, 0), respectively, as well as three demand points
P1 = (1, 2), P2 = (3,−1) and P3 = (4, 1) (see Figure 1). The transportation
cost from the facility to each demand point is imposed to be proportional to the



144 R. BLANQUERO AND E. CARRIZOSA

Figure 1. Example of set C̃k
j

Euclidean distance separating them, the weighting factors being w1 = 5, w2 = 4
and w3 = 3. The feasible region S is assumed to be the rectangle with vertices
(−2,−3), (−2, 5), (8, 5) and (8,−3).

The Voronoi cells V1 and V2 associated with R1 and R2 have a common edge
consists of two rays and a parabolic arc connecting them. On the other hand, the
optimal solution for (P0) is the point (2.6030, 0.6673), that belongs to the Voronoi
cell V1, (k = 1), and it is feasible.

In Figure 1 we show, for ε2 = 1, the sets C1
0 , C1

1 and C1
2 , as well as C̃1

1 using
wide line. �

The set C̃k
j can be expressed as a finite union of Uk

j closed conic arcs, since Ck
j ,

bd(Vk) and bd(S) satisfy this property. For all of these arcs it is possible to obtain
a d.c. parametric representation with known d.c. decomposition (Blanquero, 1999)
(for the sake of simplicity, we omit the indices j and k):

Au : t ∈ [0, 1] �→ (xu(t), yu(t)) u = 1, . . . , Uk
j .

Hence, the resolution of (P k
j ) reduces to solving a finite number Uk

j of univariate
problems of the form

min
t∈[0,1]

h(D1(γ1(Au(t) − a1)), . . . ,Dn(γn(Au(t) − an))) u = 1, . . . , Uk
j .

(3.7)

The following result asserts that a d.c. decomposition for every component of the
objective in (3.7) can be obtained.
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PROPOSITION 3.6. For every index i = 1, . . . , n and u = 1, . . . , Uk
j , a d.c.

decomposition for the function

Giu(t) = Di(γi(Au(t) − ai)) t ∈ [0, 1]
can be computed.

Proof. First, note that Au is d.c. with known d.c. decomposition, since it is a
parameterization of a conic arc, and also that γi(Au(t) − ai) is d.c. since it is the
composition of a guage with a d.c. function; moreover, by Proposition 3.1, one has
a d.c. decomposition for this function:

γi(Au(t) − ai) = F+
iu(t) − F−

iu(t).

Taking into account the continuity of the functions involved and the compactness
of the domain of definition, we can assume without loss of generality that F+

iu and
F−
iu are non-negative. On the other hand, let Li � max{γi(x − ai) : x ∈ S}, so one

has that:

0 � γi(Au(t) − ai) � Li ∀t ∈ [0, 1].
Then, Proposition 3.7 in Tuy (1998) provides the following d.c. decomposition for
Giu(t) :

Giu(t) = (Giu(t) + Hiu(t)) − Hiu(t)

where Hiu(t) = K(Li + F−
iu(t) − F+

iu(t)) and K is any constant satisfying K �
D′

i−(Li). �
REMARK 3.7. By Proposition 3.1 we have that an optimal solution for (P k

j ) can
be obtained by solving a finite number of univariate d.c. optimization problems,
with known d.c. decomposition for their objectives.

In order to solve these one-dimensional problems, we can use any d.c. optimization
method, such a Branch & Bound or covering algorithms (Baritompa and Cut-
ler, 1994; Blanquero, 1999; Blanquero and Carrizosa, 2000; Breiman and Cutler,
1993).

In the search of an ε-dominating point for the set Dk
j , the following lemma will

be needed.

LEMMA 3.8. For every point x̄ ∈ Dk
j ∩Vk ∩ S, with j � 0, one has that [x∗

0 , x̄] ∩
C̃k
j �= ∅

Proof. We can assume that j > 0, since x∗
0 ∈ C̃k

0 . Given x̄ ∈ Dk
j ∩ Vk ∩ S,

one has that dR(x∗
0 , Rk) = r0 < rj � dR(x̄, Rk), and then, by continuity of the

distance, [x∗
0 , x̄] ∩ Ck

j �= ∅.
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Let ȳ ∈ [x∗
0 , x̄] ∩ Ck

j . If ȳ ∈ Vk ∩ S, it follows immediately that ȳ ∈ C̃k
j , and

the result is shown in that case. Therefore, assume that ȳ �∈ Vk ∩ S and consider a
point ŷ belonging to bd(Vk ∩ S) ∩ [x̄, ȳ], which is non-empty, since ȳ �∈ Vk ∩ S,
x̄ ∈ Vk ∩ S and S is robust.

We are now going to show that ŷ ∈ Dk
j . In order to achieve this, first re-

call that the inf-distance function dR(·, Ri) is quasi-convex, (Hiriart-Urruty and
Lemaréchal, 1993), so the set N(i)

α = {x ∈ R
2 : dR(x,Ri) � α} is convex for

all α � 0. The point ŷ must satisfy that dR(ŷ, Rk) � rj since, in other case, we
consider d = max{dR(ŷ, Rk), r0}, that it is strictly less than rj . Taking into account
that ȳ ∈ [x∗

0 , ŷ] and that dR(ȳ, Rk) = rj > d, we conclude that ȳ �∈ N
(k)
d , and this

contradicts the convexity of this set, since ŷ ∈ N
(k)
d and x∗

0 ∈ N
(k)
d .

On the other hand, from ȳ ∈ Ck
j , x̄ ∈ Dk

j and the quasi-convexity of the function
dR(·, Ri), it follows that dR(ŷ, Rk) � rj+1 and, therefore, ŷ ∈ Dk

j , showing the
result. �

Using this lemma, the following proposition provides a finite ε-dominating set
for the feasible points in the Voronoi cell Vk located at a distance from Rk between
rj and rj+1. In the sequel, x∗

kj will denote an ε1-optimal solution for Problem (P k
j ).

PROPOSITION 3.9. Given j � 0, the point x∗
kj ε-dominates each point x̃ ∈ Dk

j ∩
Vk ∩ S.

Proof. Given a point x̃ ∈ Dk
j ∩ Vk ∩ S we have that:

min
1�i�m

dR(x̃, Ri) = dR(x̃, Rk)

� rj+1 (3.8)

= rj + ε2

� dR(x
∗
kj , Rk) + ε2 (3.9)

= min
1�i�m

dR(x
∗
kj , Ri) + ε2 (3.10)

where (3.8) is a consequence of x̃ ∈ Dk
j , whereas (3.9) and (3.10) follow from

x∗
kj ∈ Dk

j ∩ Vk. This shows the ε-dominance of x∗
kj with regard to the second

objective.
On the other hand, Lemma 3.8 asserts the existence of a point x̂ ∈ [x∗

0 , x̃]∩C̃k
j ⊂

S and, by convexity of the first objective, it follows that:

T1(x
∗
0 ) � T1(x̂) � T1(x̃).

The point x∗
kj is an ε1-optimal solution of minimizing T1 over C̃k

j and, hence:

T1(x
∗
kj ) − ε1 � T1(x̂) � T1(x̃)

completing the proof. �
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Step 4. Obtain a finite ε-dominating set for every set Vl ∩ S, with l ∈ I . Consider
the problem

min{T1(x) : x ∈ bd(Vl ∩ S)} (Pl)

which has a finite optimal solution, by the compactness of the feasible set and the
continuity of the objective. Taking into account that bd(Vl ∩ S) consists of conic
arcs, for which we can obtain a d.c. parameterization, an optimal solution for (Pl)

can be found by solving a finite number of univariate d.c. optimization problems.
The following result asserts that any ε1-optimal solution of (Pl) (ε1, 0)-dominates
every point in Vl ∩ S not further from Rl than the former. We omit the proof of
this and the remaining results proposed in this stage, since they are similar to those
provided in Step 3 (see Blanquero, 1999, for details).

PROPOSITION 3.10. For l ∈ I , let x∗
l be an ε1-optimal solution for Problem (Pl)

and El = {x ∈ Vl : dR(x,Rl) � dR(x
∗
l , Rl)}. Then x∗

l (ε1, 0)-dominates every
point x̃ ∈ El ∩ S.

We consider the sequence {rj }∞
j=0, recursively defined as

r0 = dR(x
∗
0 , Rk) rj = rj−1 + ε2 j ∈ N,

as well as the sets

Cl
j = {x ∈ R

2 : dR(x,Rl) = rj }
Dl

j = {x ∈ R
2 : rj � dR(x,Rl) � rj+1}.

The outline of the procedure consists of obtaining an ε-dominating point for every
set Dl

j ∩ Vl ∩ S, j � 0, as in Step 3, for which we consider the set C̄l
j , defined as

C̄l
j = ((Cl

j−1 ∪ Cl
j) ∩ Vl ∩ S) ∪ (Dl

j−1 ∩ bd(Vl ∩ S)),

as well as the optimization problem

min{T1(x) : x ∈ C̄l
j }. (P l

j ))

EXAMPLE 3.11. In Figure 2 we show the sets C2
0 , C2

1 and C2
2 , as well C̄2

2 using
wide line, for the problem considered in Example 3.5, taking ε2 = 0.8 in this
case. �
The set C̄l

j can be written as a finite union of Ul
j closed conic arcs, since Cl

j−1,
Cl
j , bd(Vl) and bd(S) satisfy this property. For all of these arcs it is possible to

obtain a d.c. parametric representation wit known d.c. decomposition (for the sake
of simplicity, we omit the indices j and l):

Au : t ∈ [0, 1] �→ (xu(t), yu(t)) u = 1, . . . , U l
j .
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Figure 2. Example of set C̄l
j

Hence, the resolution of (P l
j ) reduces to solving a finite number Ul

j of univariate
problems of the form

min
t∈[0,1]

h(D1(γ1(Au(t) − a1)), . . . ,Dn(γn(Au(t) − an))) u = 1, . . . , U l
j .

(3.11)

As with the set Vk ∩ S, it is possible to obtain a d.c. decomposition for every
component of the objective of (3.11):

PROPOSITION 3.12. For every index i = 1, . . . , n and u = 1, . . . , U l
j , a d.c.

decomposition for the function

Giu(t) = Di(γi(Au(t) − ai)) t ∈ [0, 1]
can be computed.

REMARK 3.13. As a consequence of Proposition 3.1 one has that an optimal
solution for (P l

j ) can be obtained by solving a finite number of univariate d.c.
optimization problems, with known d.c. decomposition for their objectives.

In the sequel, x∗
lj will denote an ε1-optimal solution for problem (P l

j ).
As in Step 3, we present a technical lemma that will be needed in order to build

a finite ε-dominating set for Dl
j .

LEMMA 3.14. For every x̄ ∈ Dl
j−1 ∩Vl ∩S, j � 1, one has that [x∗

0 , x̄]∩ C̄l
j �= ∅
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Finally, we provide a result that allows us to obtain a finite ε-dominating set for
the feasible points in Vl whose distance from Rl lies between rj−1 and rj .

PROPOSITION 3.15. Given j � 1, the point x∗
lj ε-dominates every point x̃ ∈

Dl
j−1 ∩ Vl ∩ S.

Step 5. Suppress (0,0)-dominated solutions from the set obtained in the previous
steps. In this stage we are going to remove from S∗ those points (0,0)-dominated
by any other element in this set belonging to a different Voronoi cell. In order to
achieve this, the following simple procedure can be used:
(1) Sort the elements in S∗ by increasing values of T1.
(2) Examine the list and suppress those points x∗

j with an objective value for T2

less than or equal to its predecessor, that is, if T2(x
∗
j ) � T2(x

∗
j−1) we remove

x∗
j from the list.

As a summary, we now provide a schematic description of the algorithm.

Algorithm 3.16

Step 0. Initialization
0.1. Set S∗ := ∅.
0.2. Choose ε1 > 0, ε2 > 0.
Step 1. Solve the optimization problem given by the first objective.
1.1. Find x∗

0 ∈ arg min{T1(x) : x ∈ R
2}.

Step 2. Build the Voronoi cells
2.1. Build the cover of the plane by Voronoi cells V(A−) = {Vi}mi=1 generated

by the regions Ri .
2.2. Find a Voronoi cell Vk such that x∗

0 ∈ Vk.
2.3. If x∗

0 is feasible, set I = {i : 1 � i � m, i �= k, Vi ∩ S �= ∅} and go to Step
3. Otherwise, set I = {i : 1 � i � m, Vi ∩ S �= ∅} and go to Step 4.

Step 3. Obtain a finite ε-dominating set for Vk ∩ S

3.1. Set r0 := dR(x
∗
0 , Rk)

3.2. Repeat for j = 0, 1, . . .
3.2.1. Set rj+1 := rj + ε2.
3.2.2. Set

Ck
j := {x ∈ R

2 : dR(x,Rk) = rj }
Dk

j := {x ∈ R
2 : rj � dR(x,Rk) � rj+1}

C̃k
j := (Ck

j ∩ Vk ∩ S) ∪ (Dk
j ∩ bd(Vk ∩ S)).

3.2.3. If C̃k
j = ∅, go to Step 4.

3.2.4. Find an ε1-optimal solution x∗
kj for Problem min{T1(x) : x ∈ C̃k

j }
Step 4. Obtain a finite ε-dominating set for Vl ∩ S with l ∈ I

4.1. Repeat for l ∈ I
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Table 1. Negatively affected points (Example 3.1).

(5,17) (5,54) (7,14) (7,61) (7,67) (8,14) (8,20) (9,42) (9,74) (11,76)

(12,76) (13,20) (15,10) (17,10) (18,91) (19,37) (20,33) (20,53) (21,58) (21,92)

(22,65) (23,31) (23,38) (23,49) (23,72) (23,95) (24,18) (24,77) (25,45) (26,40)

(26,67) (27,52) (28,70) (31,44) (34,82) (36,58) (37,25) (38,61) (40,9) (41,12)

(41,60) (42,25) (43,12) (46,63) (48,11) (49,34) (49,51) (49,57) (50,52) (50,54)

(50,63) (52,89) (54,8) (55,95) (56,91) (58,69) (58,93) (59,60) (62,70) (62,79)

(63,37) (65,12) (66,89) (67,79) (67,83) (69,18) (69,81) (70,6) (70,12) (70,25)

(70,37) (70,44) (70,54) (70,57) (71,17) (71,42) (71,53) (72,56) (74,79) (74,95)

(75,58) (77,54) (77,93) (79,41) (79,53) (80,38) (81,21) (81,69) (83,53) (83,56)

(84,92) (87,49) (89,36) (89,38) (90,71) (90,84) (92,9) (93,23) (93,75) (94,47)

4.1.1. Find an ε1-optimal solution x∗
l for Problem min{T1(x) : x ∈ bd(Vl ∩

S)}
4.1.2. Set S∗ := S∗ ∪ {x∗

l }.
4.1.3. Set r0 := dR(x

∗
l , Rl).

4.1.4. Repeat for j = 1, 2, . . .
4.1.4.1. Set rj := rj−1 + ε2.
4.1.4.2. Set C̄l

j := ((Cl
j−1 ∪ Cl

j ) ∩ Vl ∩ S) ∪ (Dl
j−1 ∩ bd(Vl ∩ S))

4.1.4.3. If C̄l
j = ∅, go to Step 5.

4.1.4.4. Find an ε1-optimal solution x∗
lj for Problem min{T1(x) : x ∈

C̄l
j }

4.1.4.5. Set S∗ := S∗ ∪ {x∗
lj}

Step 5. Purge the ε-dominating set
5.1. Sort the elements in S∗ by increasing values of T1.
5.2. Examine S∗ and remove points xj ∈ S∗ such that T2(xj ) � T2(xj−1).

Note that in Step 4.1.4. for j � 2, the minimum of T1(x) over Cl
j−1 ∩ Vl ∩ S has

already been computed in the previous iteration, so it must not be considered again
in the minimization problem of Step 4.1.4.4.

REMARK 3.17. Note that the algorithm described above can be extended to more
general settings. Indeed, the feasible set S can also be any compact and convex set
(for which a d.c. representation of its boundary can be obtained using the method-
ology described in Blanquero and Carrizosa, 2000) or, with more generality, any
robust and bounded (not necessarily convex) set with a known d.c. decomposition
for its boundary, assumed that the corresponding curves C̃k

j can be computed.
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Table 2. Demand points and
weights (Example 3.1).

Pi wi Pi wi

(25,27) 1 (30,20) 1

(31,31) 1 (32,27) 1

(34,31) 1 (35,22) 1

(36,41) 1 (37,43) 1

(38,35) 1 (39,29) 1

(40,29) 1 (45,33) 1

(90,70) 12

Figure 3. Feasible set and Voronoi diagram (Example 3.1).

Figure 4. ε-Dominating set (Example 3.1).



152 R. BLANQUERO AND E. CARRIZOSA

Table 3. ε-Dominating set and objective values (Example 3.1).

Ei T1 T2 Ei T1 T2

(41.622,41.919) 839.679 10.824 (41.957,42.500) 839.717 11.039

(56.043,22.304) 984.539 13.653 (56.846,23.308) 973.671 13.262

(56.869,23.361) 973.040 13.233 (57.100,23.901) 966.700 12.946

(57.285,24.331) 961.783 12.733 (57.554,24.959) 954.782 12.446

(57.776,25.478) 949.172 12.233 (57.814,27.036) 930.581 11.233

(57.831,26.954) 931.608 11.298 (57.948,26,410) 938.514 11.733

(59.714,47.286) 815.611 10.798 (60.464,49.000) 814.932 10.767

(60.650,49.217) 814.881 10.503 (61.063,49.508) 814.790 10.003

(61.476,49.799) 814.703 9.503 (61.890,50.091) 814.618 9.003

(62.304,50.384) 814.536 8.503 (62.719,50.678) 814.457 8.003

(63.135,50.973) 814.380 7.503 (63.552,51.269) 814.306 7.003

(79.652,62.599) 812.571 6.542 (79.830,62.298) 812.561 6.410

(80.310,62.240) 812.841 6.795 (80.428,63.118) 812.523 5.910

(86.114,67.237) 812.198 5.410 (86.161,67.071) 812.231 5.500

(86.458,67.471) 812.182 5.000 (86.871,67.766) 812.162 4.500

(87.286,68.062) 812.142 3.000 (88.550,68.963) 812.083 2.500

(88.123,68.659) 812.064 2.000 (89.449,69.605) 812.043 1.500

(90.000,70.000) 812.019 1.000

Figure 5. Comparison of objective values over the ε-dominating set (Example 3.1).

3.1. AN ILLUSTRATIVE EXAMPLE

As a step-by-step example we consider the location problem of a semi-obnoxious
facility in the square S = [10, 90]2, in which the objective T1 is given by the sum
of the transportation costs from the facility to the demand points, each of which
is assumed to be proportional to the Euclidean distance separating them. The set
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of elements negatively affected by the new facility consists of 100 points, whose
coordinates are shown in Table 1; we have also considered a set of 13 demand
points, with coordinates and weights given in Table 2. Their position in the plane,
as well as the Voronoi diagram generated by the negatively affected points, are
shown in Figure 3.

The application of the previous algorithm to this problem, taking ε1 = 10−6 and
ε2 = 0.5, provided an ε-dominating set of 39 points, whose coordinates and object-
ive values are given in Table 3. Such a set is also shown in Figure 4 (coordinates)
and Figure 5 (objective values).

The output given in Table 3 can be of help in the decision-making process.
Indeed, note that with this information the original decision problem of choosing
a point from the (infinite, non-convex) feasible set S, is reduced to inspecting the
finite ε-dominating set, for which the use of a M.C.D.A. methodology may then be
appropriate; for instance, if the decision-maker wants to aggregate the objectives
T1 and T2 by means of an additive utility,

λ · T1 + (1 − λ) · (−T2) (3.12)

for some λ in [0,1], one just needs to evaluate the ε-dominating set S∗ using (3.12):
the point in S∗ yielding the lowest value is an ε-optimal solution to the problem

min
x∈S (λ · T1(x) + (1 − λ) · (−T2)(x))

The computational implementation of the algorithm has been performed using C++
language and LEDA (Library of Efficient Data types and Algorithms), (Mehlhorn
and Näher, 1995, 1999) a development of Max-Planck-Institut für Informatik. �
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